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An elastoplastic plane contact problem [I] of the nonlinear theory of elasticity is 
studied for a half-plane of a material of the harmonic type [2] under simple loading condi- 
tions. Friction is absent in the contact region. We present the solution of an elastoplas- 
tic problem on the tension of an infinite plate of the material when it is weakened by two 
semiinfinite slits located along the real axis [3]. The exact solution of both of these 
problems is obtained. 

i. Let a nonlinearly elastic half-plane S occupy the lower part of the plane of the 
complex variable z = x + iy. Furthermore, let a rigid die be applied along the line L' = 
[-b; b] of the boundary of S, henceforth designated as L. The die is applied symmetrically 
relative to the coordinate origin. The die is acted upon by a concentrated force (0, N o ) 
directed vertically downward along the axis 0y, where N o is an assigned constant. The re- 
maining part of the boundary (L" = ]-~; -b[ U ]b; ~[) is free of external forces. There 
are no stresses or rotation at infinity. 

Given a certain value of the external load on the contact region under the die, a plas- 
tic region of zero thickness is formed near the greatest concentration of contact stresses. 
This region is localized on the boundary of the half-plane under the die in the form of the 
zone F' It is unknown beforehand and is subject to determination during the solution of 
the problem. We then introduce the notation F = L'\F' We assume that the familiar Tresca- 
Saint Venant yield condition [4] is satisfied in the plastic region. We further assume that 
the die can only move translationally. 

Below, we examine the case of small (but not necessarily infinitesimal) elastoplastic 
strains. Here, the boundary conditions (physical formulation) of the problem can be con- 
sidered correct [3, 4]. 

Using the well-known properties of the slip line, we write the boundary conditions of 
the problem in the form [5] 

Xu = 0 on L, v /(x)@const on p; (I.i) 

Yy = as on P', Yy : 0 on L", (1.2) 

where o s is the yield point in compression; y = f(x) is a real-valued function on F which 
characterizes the form of the base of the die [it is assumed that f'(x) e H(F)]. 

We will solve the problem by using complex representations of the stresses, strain, 
and displacements for a nonlinearly-elastic material of the harmonic type in terms of two 
analytic functions(P(z) and ~(z) [6] (z* = z + u + iv) that are analytic in the physical 
region S: 

V J  " ( 1 . 3 )  

__4(~-]-2F)~(q) az* Oz* 

V J  q o~ ~ ' 

oz )~ : 2t t ' ~ 1- 2tt ~ '  o? ~-i  2it [ (p,~ (z) J ( 1 . 4 )  

(1.5) 

Tbilisi. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, 
pp. 138-143, July-August, 1989. Original article submitted April 3, 1987; revision submitted 
February 18, 1988. 

0021-8944/89/3004-0641512.50 �9 1990 Plenum Publishing Corporation 641 



c)z Oz Oz az ' q = 2 Oz ' ~ (q) = q ;, j_ 2t t , 

z*-= z + u + iv. 

(1.6) 

It was shown in [6] that for large Izl there exist the following representations (in 
the absence of stresses and rotation at infinity): 

-- 4~g (~ + t~ ) In z-~- z -k %(z) -k const, 
(1.7) 

Here (X, Y) is the principal vector of all of the external forces; I and ~ are the Lame con- 
stants; ~0(z) and ~0(z) are functions which are holomorphic in S and which have the order 
o(i) at large Izl. Also, 

~ ' ~ ) v ~ O  ~n S §  (1.8) 

On the basis of the first equation of (i.i), we can use (1.3), (1.4), (I.6), and (1.7) 
to arrive at the relation 

~ ( ~ " ( ~ - - ~ ' ~ ( ~ ' ( ~ = 0  on L. ( 1 . 9 )  

With t h e  u se  o f  ( 1 . 9 ) ,  c o m p a r i s o n  o f  ( 1 . 3 )  and ( 1 . 6 )  p r o d u c e s  a f o rmu la  which i s  impor-  
t a n t  for further examination of the problem 

Proceeding on the basis of (1.7), it can readily be seen from (i. I0) that 

From here, 

( z ) = e x p  --~.L x- -z  j with z ~ S ;  

t [~-{-tz 2~-FN(x) ] 
F ( x ) = ~ l n  ~ 2 ( ~ + ~ ) - - N ( x )  " 

in  a c c o r d a n c e  w i t h  ( 1 . 2 ) ,  we have  

( 1 . 1 1 )  

( 1 . 1 2 )  

r  = j- (1.13) 

Now let us examine boundary value (1.5) on L and let us differentiate the resulting 
equation with respect to x. Then, with allowance for (1.9), 

, , [ ~  ~+-~t t l _ _ l  on L" u~+i~,~=~'~ ~' §  ~(x)[ 

From h e r e ,  we o b t a i n  t h e  f o l l o w i n g  on t h e  b a s i s  o f  t h e  second  e q u a t i o n  of  ( l . 1 ) :  

~ +  i~,~(,~) I. I m ~ p " ( x ) - - ( ~ + 2 p ) ] ' ( x )  on r. 

Now we c a l c u l a t e  t h e  bounda ry  v a l u e  q~ ' ( z ) ,  g i v e n  by Eq. ( 1 . 1 3 ) ,  when z a p p r o a c h e s  t h e  
p o i n t  x o f  t h e  c o n t o u r  I" w h i l e  r e m a i n i n g  i n s i d e  S, Here we i n t r o d u c e  t h e  n o t a t i o n  [ i n  (x - 
x 0 ) ]  F, = A ( x 0 ) .  Then u s i n g  t h e  w e l l - k n o w n  S o k h o s t k i i - P l e m e l j  f o r m u l a ,  we o b t a i n  t h e  f o l l o w -  
ing  on F: 

{2F, 9 ~F(x) d___ x] 
[s --i- ~ ~- p e.xp (2F (xo))] si,, -h-: A (so) + ~ j , _  Zo j = (k+21a) 1' (xo), ( l .  16 ) 

F 

where F(x) is determined in accordance with (i.12), while F s is constant: 

1"~ = ~ In F 2 (Zq-$)'-- % " (1.12) 
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i"~ 
- b - a  ~ ~ b x 

\ 

Fig. i Fig. 2 

Equation (1.14) is a nonlinear functional equation for determining the function F(x) 
on F. Also, the integration line is unknown. Thus, this equation does not belong to one 
of the familiar (investigated) classes of nonlinear equations. 

Despite these difficulties, an exact solution for the problem and a unique solution 
for the given class can be obtained in one special case of practical importance. 

2. We will examine a rigid die having a rectangular horizontal base, i.e., when f(x) = 
const. We further put F' = [-b; -a] U [a; b] and, consequently, F = ]-a; a [. This means 
that the plastic region consists of two rectilinear segments I-b; -a], [a; b] located on 
the contact line next to corner points -b and b (Fig. i). 

In the present case, A(x~)~ In ( x ~  Thus, Eq. (1.18) takes the form 
(z o -  ~) (x o + b) 

~ F (x) d.T /" , in  (% i-a) ( % -  t) 
,~ - .~o ( x , -  a) (x o + b) 

- -o  

q- C, x, X o ~  ]--a; a[ ( 2 . i )  

(C is an arbitrary constant). Considering that F(-x) = F(x) and assuming in (2.1) that x 0 = 
0, we obtain C = 0 and, thus, 

i " F (x) dx 
.~ - -  X 0 ,2 

- - a  

_ _  = _ ~ j ,  % ~ : ' 0  (~o - ~ )  
�9 �9 (xo ~ ) (x  o + ~ )  

As a result, we have found a singular characteristic integral equation to determine 
the function F(x) on the interval ]--a; a [. As is known, the solution of this equation of 
the class h(-a; a) has the form [7] 

F.~l/--~---xo ln[(x-~-a)(x--b)l(x--a)(x-~-b)] dx ( 2 . 2 )  
F (xo) = .,. V ~ , 7 _ ~  x - . o  

- - a  

when the following solvability condition is satisfied: 

i In[(x [- a) (x --  b) [ (x --  a) (x -i- b)] dx 
_ , .  V TzT_ ~ = o. 

However, since the integrand is odd, this condition is satisfied automatically. 

Let us calculate the singular integral in the right side of (2.2). After reductions, 
we obtain 

j a 2  __  x 2  F(x)-=F,~ t ~r ~ a r c t g  (2.3) 
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(-a < x < a ). This formula contains the unknown constant a. Let us determine it. First 
we insert (2.3) into the right side of (i.ii). Then, after performing the necessary cal- 
culations, we find 

[Fs {z+b) V~(bl--a~)(ze--al)-kbz--aZ ( 2 . & )  

w h e r e  t h e  b r a n c h  o f  t h e  f u n c t i o n  s  = - a  ~ i s  f i x e d  by  t h e  c o n d i t i o n  l i m  V ~ -  
o 2 

- - =  i ,  a n d  
z 

the constant F s is determined by Eq. (i.15). 

We calculate the asymptote with z -I in the right side of (2.4) and we compare the re- 
sulting expression with the corresponding expression from Eqs. (1.7). After performing the 
necessary calculations, we obtain 

/ 

a = b ~ / /  I-- 
(~ + z~)- N~ ( 2 . 5 )  

[ 11 
In accordance with the linear classical theory, this formula appears as [2] 

V a = b I -- 4bSa--~.a ~ �9 

Let us now return to Eq. (2.3). Allowing for (i.12), we find from (2.3) that 

N (x) = 

[( �9 ] q 0 2 - - T  2 
1+---- urctg | /  " "" 

s -I- ~ 2~ q- % a" -- bZ_az 
21a > 2 ( s  - - t  

a2__N 2 
( 2 . 6 )  

on [-a; a ]. After we determine ~(z), we can find the other sought function @(z) from condi- 
tion (1.9) by an established method. The field of the elastic elements of the region in 
question is determined from (1.3)-(1.6) by numerical operations. 

3. Let us examine the following problem. Let an infinite plane z = x + iy of a har- 
monic material be weakened by two semiinfinite straight slits located along the real axis. 
The edges of the slits are free of external loads, while only the concentrated force (0, 
N O ) acts at infinity. The concentrated force is applied at an infinitely distant point and 
is directed along the Oy axis (a force of the same magnitude, balanced by the first force, 
acts at the point z = -~). Now the plastic region consists of two segments located along 
the line of the slit on its extension (Fig. 2). 

If we imaginarily remove the top half-plane, then its effect on the lower part S is 
identical to the action of a rigid die with a straight horizontal base on the line between 
the slits (cracks). However, now the die must be acted upon by a force that balances the 
force acting on the bottom half-plane. If we introduce the notation L = ]-~; ~[, L' = [-b; 
b], F' = [-b; -a] U [a; b], F = L'\F', and L" = L\L', then the boundary conditions of the 
problem have the form 

Xy - :  0 on L, v' ~ 0 on P, r y  ~ 6~ on F ' ,  Yv ~ 0 on L", 

i.e., they coincide with conditions (i.i) and (1.2) only if f(x) = const in the latter. Thus, 
the complete analogy is made evident. As a result, the solution of the problem is given 
by Eqs. (2.4)-(2.6). In these formulas, N O is replaced by N O = P0- This solution is shown 
below written in a somewhat different form. In particular, the complex potential 
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I ], 
q,'(z) o,~p --~I~, 

while we obtain the following expression for the normal stress on the segment I-a; a ] between 
the slits 

AT (x)  = 
2p exp2F~ t ~ a,ct~ b,---_--2a2 k-----~7 -- 

The linear dimension of the plastic region is determined by the formula 

a = b [ t  (1 -- v~)~ P~ ] '/~ , 4 1 f f b 2 F  ~ 

where  v i s  t h e  P o i s son  r a t i o ;  E i s  t h e  Young modulus ;  t h e  c o n s t a n t  F s i s  found from ( 1 . 1 5 ) .  
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ALGORITHM FOR STUDYING THE NONLINEAR DEFORMATION AND STABILITY 

OF CIRCULAR CYLINDRICAL SHELLS WITH INITIAL SHAPE FLAWS 

L. P. Zheleznov and V. V. Kabanov UDC 624.074.4:539.1 

Axisymmetric deflections have been examined in most of the well-known solutions of prob- 
lems concerning the stability of shells with initial deflections. Some of the studies have 
examined the effect of nonaxisymmetric deflections. The solutions have been obtained either 
in a classical formulation, without allowance for the moments of the initial stress state, 
or in a formulation which presumed the development of initial deflections, without restruc- 
turing, during nonlinear deformation under axisymmetric loads. 

Below we obtain a fairly general solution to the problem, without restrictions on the 
load or the form of the initial and bifurcative deflections. We use the method of finite 
elements in displacements. The finite elements are chosen in the form of rectangles of na- 
tural curvature having form functions which consider their displacement as rigid bodies. 

We will examine a circular cylindrical shell of the length L, radius R, and thickness 

N M 

h. The initial shape flaws are given either by the series w ~ == ~. ~u,~;cosi~cos/nx:L. or by 
~=I , t  = 1  

a two-dimensional set of nodal values of the initial deflection and its derivatives w ~ = 
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